2022 AMC 10A #17

Problem:

How many three-digit positive integers a b c are there whose nonzero digits a, b, and c satisfy

0.a b c=13(0.a+0.b+0.c)?(The bar indicates repetition, thus 0.a b c in the infinite repeating decimal 0.a b c a b c )

(A) 9(B) 10(C) 11(D) 13(E) 14

Solution:

Note that we can rewrite the condition as abc999=13(a9+b9+c9)
abc=37(a+b+c)
100a+10b+c=37a+37b+37c
63a27b36c=0
7a=3b+4c

Now, after casework on a=1,2,3,,9, we get that there are 13 (D) such three-digit integers abc.

Comments