2019 AIME Problem 8

Problem:

Let x be a real number such that sin10x+cos10x=1136. Then sin12x+cos12x=mn where m and n are relatively prime positive integers. Find m+n.


Solution:

We perform a recursion style solution on this problem, relying on the fact that sin2x+cos2x=1Note that (sin2x+cos2x)(sin2x+cos2x)=sin4x+cos4x+2sin2xcos2x=1sin4x+cos4x=12sin2xcos2xThen, (sin4x+cos4x)(sin2x+cos2x)=sin6x+cos6x+sin4xcos2x+sin2xcos4x=sin6x+cos6x+(sin2xcos2x)(sin2x+cos2x)=12sin2xcos2xsin6x+cos6x=13sin2xcos2xThen, (sin6x+cos6x)(sin2x+cos2x)=sin8x+cos8x+sin6xcos2x+sin2xcos6x=sin8x+cos8x+(sin2xcos2x)(sin4x+cos4x)=sin8x+cos8x+(sin2xcos2x)(12sin2xcos2x)=13sin2xcos2xsin8x+cos8x=13sin2xcos2x(sin2xcos2x)(12sin2xcos2x)Then, (sin8x+cos8x)(sin2x+cos2x)=sin10x+cos10x+sin8xcos2x+sin2xcos8x=sin10x+cos10x+(sin2xcos2x)(sin6x+cos6x)=sin10x+cos10x+(sin2xcos2x)(13sin2xcos2x)=13sin2xcos2x(sin2xcos2x)(12sin2xcos2x)At this point, we know that the value of sin10x+cos10x=1136, so letting y=sin2xcos2x and plugging these values into the above equation, we get y=16 and y=56, but we can weed out the second one because it gives a negative value for the computation of sin4x+cos4x, which is clearly not possible.Now, we apply the recursion one last time, to find the desired term.We have (sin10x+cos10x)(sin2x+cos2x)=sin12x+cos12x+(sin2xcos2x)(sin8x+cos8x)=sin12x+cos12x+(sin2xcos2x)(13sin2xcos2x(sin2xcos2x)(12sin2xcos2x))=sin12x+cos12x+(a)(13a(a)(12a))=1136Solving this equation for sin12x+cos12x, we obtain 1354.

Comments